Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Kidney Int ; 102(6): 1409-1419, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2015782

ABSTRACT

Numerous cases of glomerulonephritis manifesting shortly after SARS-CoV-2 vaccination have been reported, but causality remains unproven. Here, we studied the association between mRNA-based SARS-CoV-2 vaccination and new-onset glomerulonephritis using a nationwide retrospective cohort and a case-cohort design. Data from all Swiss pathology institutes processing native kidney biopsies served to calculate incidence of IgA nephropathy, pauci-immune necrotizing glomerulonephritis, minimal change disease, and membranous nephropathy in the adult Swiss population. The observed incidence during the vaccination campaign (January to August 2021) was not different from the expected incidence calculated using a Bayesian model based on the years 2015 to 2019 (incidence rate ratio 0.86, 95% credible interval 0.73-1.02) and did not cross the upper boundary of the 95% credible interval for any month. Among 111 patients 18 years and older with newly diagnosed glomerulonephritis between January and August 2021, 38.7% had received at least one vaccine dose before biopsy, compared to 39.5% of the general Swiss population matched for age and calendar-time. The estimated risk ratio for the development of new-onset biopsy-proven glomerulonephritis was not significant at 0.97 (95% confidence interval 0.66-1.42) in vaccinated vs. unvaccinated individuals. Patients with glomerulonephritis manifesting within four weeks after vaccination did not differ clinically from those manifesting temporally unrelated to vaccination. Thus, vaccination against SARS-CoV-2 was not associated with new-onset glomerulonephritis in these two complementary studies with most temporal associations between SARS-CoV-2 vaccination and glomerulonephritis likely coincidental.


Subject(s)
COVID-19 , Glomerulonephritis , Adult , Humans , Incidence , Retrospective Studies , Bayes Theorem , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Glomerulonephritis/epidemiology , Glomerulonephritis/etiology , Vaccination/adverse effects , RNA, Messenger
2.
Histopathology ; 77(2): 198-209, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-889739

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a sweeping pandemic. Its major manifestation is in the respiratory tract, and the general extent of organ involvement and the microscopic changes in the lungs remain insufficiently characterised. Autopsies are essential to elucidate COVID-19-associated organ alterations. METHODS AND RESULTS: This article reports the autopsy findings of 21 COVID-19 patients hospitalised at the University Hospital Basel and at the Cantonal Hospital Baselland, Switzerland. An in-corpore technique was performed to ensure optimal staff safety. The primary cause of death was respiratory failure with exudative diffuse alveolar damage and massive capillary congestion, often accompanied by microthrombi despite anticoagulation. Ten cases showed superimposed bronchopneumonia. Further findings included pulmonary embolism (n = 4), alveolar haemorrhage (n = 3), and vasculitis (n = 1). Pathologies in other organ systems were predominantly attributable to shock; three patients showed signs of generalised and five of pulmonary thrombotic microangiopathy. Six patients were diagnosed with senile cardiac amyloidosis upon autopsy. Most patients suffered from one or more comorbidities (hypertension, obesity, cardiovascular diseases, and diabetes mellitus). Additionally, there was an overall predominance of males and individuals with blood group A (81% and 65%, respectively). All relevant histological slides are linked as open-source scans in supplementary files. CONCLUSIONS: This study provides an overview of postmortem findings in COVID-19 cases, implying that hypertensive, elderly, obese, male individuals with severe cardiovascular comorbidities as well as those with blood group A may have a lower threshold of tolerance for COVID-19. This provides a pathophysiological explanation for higher mortality rates among these patients.


Subject(s)
COVID-19/pathology , Capillaries/pathology , Vascular Diseases/pathology , Vascular Diseases/virology , Aged , Aged, 80 and over , Autopsy , Capillaries/virology , Female , Humans , Lung/pathology , Male , Middle Aged , SARS-CoV-2
3.
Histopathology ; 78(3): 358-370, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-796093

ABSTRACT

Transmission electron microscopy has become a valuable tool to investigate tissues of COVID-19 patients because it allows visualisation of SARS-CoV-2, but the 'virus-like particles' described in several organs have been highly contested. Because most electron microscopists in pathology are not accustomed to analysing viral particles and subcellular structures, our review aims to discuss the ultrastructural changes associated with SARS-CoV-2 infection and COVID-19 with respect to pathology, virology and electron microscopy. Using micrographs from infected cell cultures and autopsy tissues, we show how coronavirus replication affects ultrastructure and put the morphological findings in the context of viral replication, which induces extensive remodelling of the intracellular membrane systems. Virions assemble by budding into the endoplasmic reticulum-Golgi intermediate complex and are characterised by electron-dense dots of cross-sections of the nucleocapsid inside the viral particles. Physiological mimickers such as multivesicular bodies or coated vesicles serve as perfect decoys. Compared to other in-situ techniques, transmission electron microscopy is the only method to visualise assembled virions in tissues, and will be required to prove SARS-CoV-2 replication outside the respiratory tract. In practice, documenting in tissues the characteristic features seen in infected cell cultures seems to be much more difficult than anticipated. In our view, the hunt for coronavirus by transmission electron microscopy is still on.


Subject(s)
COVID-19/pathology , SARS-CoV-2/ultrastructure , COVID-19/virology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Microscopy, Electron, Transmission , RNA, Viral , SARS-CoV-2/physiology , Virion/ultrastructure , Virus Assembly , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL